On the zeros of second order linear differential polynomials
نویسندگان
چکیده
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملOn the Zeros of Pairs of Linear Differential Polynomials
Suppose that f is meromorphic in the plane and that F and G are given by
متن کاملNon-real zeros of linear differential polynomials
Let f be a real entire function with finitely many non-real zeros, not of the form f = Ph with P a polynomial and h in the Laguerre-Pólya class. Lower bounds are given for the number of non-real zeros of f ′′ + ωf , where ω is a positive real constant.
متن کاملOn zeros of polynomials and allied functions satisfying second order differential equations
We shall give bounds on the spacing of zeros of certain functions belonging to the LaguerrePólya class and satisfying a second order linear differential equation. As a corollary we establish new sharp inequalities on the extreme zeros of the Hermite, Laguerre and Jacobi polynomials, which are uniform in all the parameters.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1990
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500018186